Differences in spawning date between populations of common frog reveal local adaptation.
نویسندگان
چکیده
Phenotypic differences between populations often correlate with climate variables, resulting from a combination of environment-induced plasticity and local adaptation. Species comprising populations that are genetically adapted to local climatic conditions should be more vulnerable to climate change than those comprising phenotypically plastic populations. Assessment of local adaptation generally requires logistically challenging experiments. Here, using a unique approach and a large dataset (>50,000 observations from across Britain), we compare the covariation in temperature and first spawning dates of the common frog (Rana temporaria) across space with that across time. We show that although all populations exhibit a plastic response to temperature, spawning earlier in warmer years, between-population differences in first spawning dates are dominated by local adaptation. Given climate change projections for Britain in 2050-2070, we project that for populations to remain as locally adapted as contemporary populations will require first spawning date to advance by approximately 21-39 days but that plasticity alone will only enable an advance of approximately 5-9 days. Populations may thus face a microevolutionary and gene flow challenge to advance first spawning date by a further approximately 16-30 days over the next 50 years.
منابع مشابه
Outlier Loci Detect Intraspecific Biodiversity amongst Spring and Autumn Spawning Herring across Local Scales
Herring, Clupea harengus, is one of the ecologically and commercially most important species in European northern seas, where two distinct ecotypes have been described based on spawning time; spring and autumn. To date, it is unknown if these spring and autumn spawning herring constitute genetically distinct units. We assessed levels of genetic divergence between spring and autumn spawning herr...
متن کاملExplorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria).
Today, with the rapid development of population genomics, the genetic basis of adaptation can be unraveled directly at the genome level, without any prerequisites about the selectively advantageous genes or traits. For nonmodel species, it is now possible to screen many markers randomly scattered across the genome and to distinguish between the neutral genetic background and outlier loci displa...
متن کاملComparative High-Density Linkage Mapping Reveals Conserved Genome Structure but Variation in Levels of Heterochiasmy and Location of Recombination Cold Spots in the Common Frog
By combining 7077 SNPs and 61 microsatellites, we present the first linkage map for some of the early diverged lineages of the common frog, Rana temporaria, and the densest linkage map to date for this species. We found high homology with the published linkage maps of the Eastern and Western lineages but with differences in the order of some markers. Homology was also strong with the genome of ...
متن کاملPopulation‐specific effects of developmental temperature on body condition and jumping performance of a widespread European frog
All physiological processes of ectotherms depend on environmental temperature. Thus, adaptation of physiological mechanisms to the thermal environments is important for achieving optimal performance and fitness. The European Common Frog, Rana temporaria, is widely distributed across different thermal habitats. This makes it an exceptional model for studying the adaptations to different thermal ...
متن کاملLocal adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria)
Both environmental and genetic influences can result in phenotypic variation. Quantifying the relative contributions of local adaptation and phenotypic plasticity to phenotypes is key to understanding the effect of environmental variation on populations. Identifying the selective pressures that drive divergence is an important, but often lacking, next step. High gene flow between high- and low-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 18 شماره
صفحات -
تاریخ انتشار 2010